Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Journal of Biological Chemistry ; 299(3 Supplement):S608, 2023.
Article in English | EMBASE | ID: covidwho-2316061

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) targets mainly the respiratory tract. In addition to respiratory symptoms, many extrapulmonary manifestations were observed in the gastrointestinal tract and reported by SARS-CoV-2 patients, including abdominal pain, nausea, and diarrhea. SARS-CoV-2 binds initially to angiotensin-converting enzyme 2 (ACE2) on the host cell surface via its spike (S) protein before it undergoes endocytosis and fusion with the lysosomal membrane. The spike protein of SARS-CoV-2 is a heavily N- and O-glycosylated trimer. Glycosylation is an essential posttranslational modification in the life cycle of membrane and secretory proteins that affects their structural and functional characteristics as well as their trafficking and sorting patterns. This study aimed at elucidating the impact of glycosylation modulation on the trafficking of both S1 subunit and ACE2 as well as their interaction at the cell surface of intestinal epithelial cells. For this purpose, the S1 protein was expressed in COS-1 cells and its glycosylation modified using N-butyldeoxynojirimycin (NB-DNJ), an inhibitor of ER-located alpha-glucosidases I and II, and or 1-deoxymannojirimycin (dMM), an inhibitor of the Golgi-located alpha-mannosidase I. The intracellular and secreted S1 proteins were analyzed by endoglycosidase H treatment. Similarly, ACE2 trafficking to the brush border membrane of intestinal Caco-2 cells was also assessed in the presence or absence of the inhibitors. Finally, the interaction between the S1 protein and ACE2 was investigated at the surface of Caco-2 cells by co-immunoprecipitation. Our data show that NB-DNJ significantly reduced the secretion of S1 proteins in COS-1 cells, while dMM affected S1 secretion to a lesser extent. Moreover, NB-DNJ and dMM differentially affected ACE2 trafficking and sorting to the brush border membrane of intestinal Caco-2 cells. Strikingly, the interaction between S1 and ACE2 was significantly reduced when both proteins were processed by the glycosylation inhibitors, rendering glycosylation and its inhibitors potential candidates for SARS-CoV-2 treatment. This work has been supported by a grant from the German Research Foundation (DFG) grant NA331/15-1 to HYN. M.K. was supported by a scholarship from the Hannover Graduate School for Veterinary Pathobiology, Neuroinfectiology, and Translational Medicine (HGNI) and by the DFG grant NA331/15-1.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

2.
Current Opinion in Physiology ; 32 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2300201
3.
Coronaviruses ; 3(3):23-34, 2022.
Article in English | EMBASE | ID: covidwho-2270458

ABSTRACT

The COVID-19 pandemic is raging across the globe, with the total active cases increas-ing each day. Globally over 63 million COVID-19cases and more than 1.4 million deaths have been reported to WHO. Throughout the world, academicians, clinicians and scientists are working tirelessly on developing a treatment to combat this pandemic. The origin of novel SARS-CoV-2 virus still remains foggy but is believed to have originated from a bat coronavirus RaTG13 with which it shares approximately 96% sequence similarity. In the present review, the authors have pro-vided an overview of the COVID-19 pandemic, epidemiology, transmission, developments related to diagnosis, drugs and vaccines, along with the genetic diversity and lifecycle of the SARS-CoV-2 based on the current studies and information available.Copyright © 2022 Bentham Science Publishers.

4.
Journal of Nephropathology ; 11(1), 2022.
Article in English | EMBASE | ID: covidwho-1553864

ABSTRACT

Autophagy is a way to create new cellular structures, clear cells invaded by microbes, and block accumulating proteins that can cause disease. Moreover, it can destroy all cellular organs and pathogens, including fungi, parasites, bacteria, and viruses, either randomly or selectively. Many research groups are examining a strategy to combat COVID-19. In particular, research is underway to identify drugs that can target autophagy in COVID-19 virus infection. Several known drugs are currently under clinical evaluation for the autophagy process, given that regulating autophagy is a way to combat COVID-19. This study introduces drugs that target the autophagy pathway.

SELECTION OF CITATIONS
SEARCH DETAIL